

Quality First

Our Drinking Water Meets or Exceeds All Federal (EPA) Drinking Water Requirements

This report is a summary of the quality of the water we provide to our customers. The analysis was made by using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented in the following pages. We hope this information helps you become more knowledgeable about what's in your drinking water.

Where do we get our drinking water?

Water Sources: Carrizo Wilcox / Sabine River

Locations: Gregg and Rusk County

Types: Both Groundwater and Surface Water

The TCEQ completed an assessment of your source water and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detection of these contaminants may be found in this report. For more information on source water assessments and protection efforts at our system, contact Matt Linnithum (903) 836-2858

Some of this source water information assessment information will be available on Texas Drinking Water Watch at <http://dww.tceq.state.tx.us/DWW/>.

Este informe incluye informacion importante sobre el agua potable. Si tiene preguntas o comentarios sobre este informe en espanol, favor de llamar al tel (903) 657-6551 para hablar con una persona bilingue en espanol

Important Health Information

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections.

Cryptosporidium is a tiny intestinal parasite found naturally in the environment. It is spread by human and animal waste. If ingested, cryptosporidium may cause cryptosporidiosis, an abdominal infection (symptoms include nausea, diarrhea, abdominal cramps). Some of the ways cryptosporidium may cause cryptosporidiosis can be spread include drinking water, contaminated water, eating contaminated food that is raw or undercooked, exposure to the feces of animals or infected individuals (i.e. changing diapers without washing hands afterwards), or exposure to contaminated surfaces. Not everyone exposed to the organism becomes ill. During 2009, Henderson tested for cryptosporidium in its source water (Sabine River). Cryptosporidium has not been found in the source water (Sabine River). Henderson works to protect from contamination and optimizes the treatment process.

You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the U.S. EPA's Safe Drinking Water Hotline (800) 426-4791 or visit <http://water.epa.gov/drink/hotline>.

EPA Wants You To Know:

ALL drinking water may contain contaminants. When drinking water meets federal standards there may not be any health-based benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

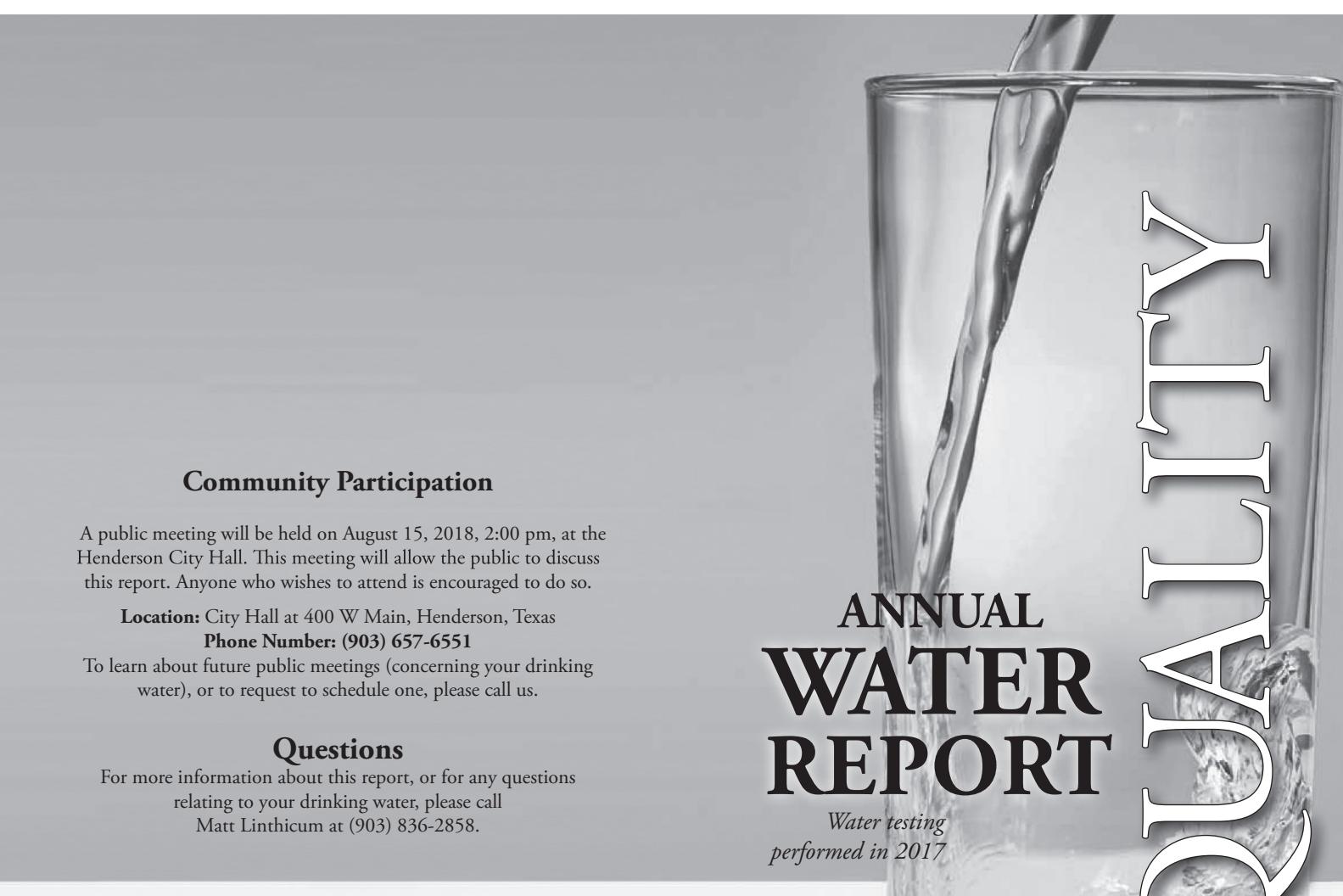
Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic Contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

Radioactive Contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.


Many constituents (such as calcium, sodium, or iron), which are often found in drinking water, can cause, taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not cause for health concern. Therefore, secondaries are not required to be reported in this document but they may greatly affect the appearance and taste of your water.

2017 Sampling Results for Contaminants in Drinking Water for Henderson

In order to ensure that tap water is safe to drink, the EPA prescribes regulations that limit the amount of certain contaminants in water provided by the public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health. The following information lists all of the federally regulated or monitored contaminants which have been found in your drinking water. The U.S. EPA requires water systems to test for up to 97 contaminants.

REGULATED CONTAMINANTS

Contaminant	Year Sampled	Average Level	Minimum Level	Maximum Level	MCL	MCLG	Unit of Measure	Potential Source of Contamination
INORGANIC CONTAMINANTS								
Arsenic	2017	0.001	0.001	0.001	0.01	0	ppm	Erosion of natural deposits; runoff from orchards, runoff from glass and electronics wastes
Barium	2017	0.03	0.015	0.048	2	2	ppm	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Chromium	2017	0.0007	0	0.001	0.1	0.1	ppm	Discharge from steel and pulp mills; erosion of natural deposits
Cyanide	2017	0.013	0	0.02	4	4	ppm	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories.
Fluoride	2017	0.13	0.0435	0.157	4	4	ppm	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
Nitrate	2017	0.061	0.01	0.0424	10	10	ppm	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits
Selenium	2017	0.005	0.005	0.005	0.05	0.05	ppm	Discharge from petroleum and metal refineries, erosion of natural deposits, discharge from mines
Thallium	2017	0.001	0.001	0.001	2	0.5	ppb	Discharge from petroleum and metal refineries, erosion of natural deposits, discharge from mines.
Beta/Photon emitters	2017	4.02	4	4.2	5	0	pCi/L	Decay of natural and man-made deposits.
Combined Radium 226/228	2017	1.5	1.5	1.5	5	0	pCi/L	Erosion of natural deposits
ORGANIC CONTAMINANTS								
Di(2-ethylhexyl)phthalate	2017	0.57	0.5	1	6	0	ug/L	Discharge from rubber and chemical factories.

Community Participation

A public meeting will be held on August 15, 2018, 2:00 pm, at the Henderson City Hall. This meeting will allow the public to discuss this report. Anyone who wishes to attend is encouraged to do so.

Location: City Hall at 400 W Main, Henderson, Texas

Phone Number: (903) 657-6551

To learn about future public meetings (concerning your drinking water), or to request to schedule one, please call us.

Questions

For more information about this report, or for any questions relating to your drinking water, please call Matt Linnithum at (903) 836-2858.

In the water loss audit submitted to the Texas Water Development Board for the time period of Jan-Dec 2017, our system lost an estimated 132,947,203 gallons of water (approximately 16.68% of our total treated water). If you have any questions about this water loss audit, please call (903) 657-5246

400 W. Main St., Henderson TX 75652-3099
(903) 836-2858 • www.hendersontx.us

Presented By
City of Henderson

Public Water System Identification Number 2010001

MAXIMUM RESIDUAL DISINFECTANT LEVEL

Systems must complete and submit disinfection data on the Surface Water Monthly Operations Report (SWMOR). On the CCR report, the system must provide disinfectant type, minimum, maximum and average levels.

Disinfectant	Year Sampled	Average Level	Minimum Level	Maximum Level	MRDL	MRDLG	Unit of Measure	Potential Source of Contamination
Chloramine	2017	1.39	0.5	3.6	<4.0	ppm	ppm	Disinfectant used to control microbes.

DISINFECTION BYPRODUCTS

Location	Contaminant	Year Sampled	Average Level	Minimum Level	Maximum Level	MCL	Unit of Measure	Potential Source of Contamination
Site 1	Haloacetic Acids (HAA5)	2017	49.00	41.00	54.00	60.00	ppb	Byproduct of drinking water disinfection.
	Total Trihalomethanes (TTHMs)	2017	61.00	61.00	71.00	80.00	ppb	Byproduct of drinking water disinfection.
Site 2	Haloacetic Acids (HAA5)	2017	4.00	3.00	5.00	60.00	ppb	Byproduct of drinking water disinfection.
	Total Trihalomethanes (TTHMs)	2017	5.00	3.00	7.00	80.00	ppb	Byproduct of drinking water disinfection.
Site 3	Haloacetic Acids (HAA5)	2017	15.00	7.00	23.00	60.00	ppb	Byproduct of drinking water disinfection.
	Total Trihalomethanes (TTHMs)	2017	27.00	17.00	36.00	80.00	ppb	Byproduct of drinking water disinfection.
Site 4	Haloacetic Acids (HAA5)	2017	3.00	2.00	4.00	60.00	ppb	Byproduct of drinking water disinfection.
	Total Trihalomethanes (TTHMs)	2017	9.00	4.00	15.00	80.00	ppb	Byproduct of drinking water disinfection.

UNREGULATED CONTAMINANTS

Bromoform, chloroform, dichlorobromomethane, and dibromochloromethane are disinfectant byproducts. There is no maximum contaminant level for these chemicals at the entry point to distribution.

Contaminant	Year Sampled	Average Level	Minimum Level	Maximum Level	Unit of Measure	Potential Source of Contamination
Chloroform	2012-2017	16.60	1.00	161.00	ppb	Byproduct of drinking water disinfection.
Bromoform	2012-2017	1.51	0.98	17.90	ppb	Byproduct of drinking water disinfection.
Bromodichloromethane	2012-2017	11.00	0.00	55.42	ppb	Byproduct of drinking water disinfection.
Dibromochloromethane	2012-2017	5.88	0.00	30.03	ppb	Byproduct of drinking water disinfection.

UNREGULATED CONTAMINANT MONITORING RULE 2 (UCMR2)

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist the EPA in determining the occurrence of unregulated contaminants in drinking water and whether further regulation is warranted. Any unregulated contaminants detected are reported in the flowing table. For additional information and data visit <http://www.epa.gov/safewater/ucmr2/index.html>, or call the Safe Drinking Water Hotline at (800)426-4791.

Contaminant	Year Sampled	Average Level	Minimum Level	Maximum Level	Unit of Measure	Potential Source of Contamination
Chloroform	2017	12.1	0	43.7	ppb	Byproduct of drinking water disinfection.
Bromoform	2017	0.1	0	1.44	ppb	Byproduct of drinking water disinfection.
Bromodichloromethane	2017	7.05	0	28.1	ppb	Byproduct of drinking water disinfection.
Dibromochloromethane	2017	2.93	0	13	ppb	Byproduct of drinking water disinfection.

LEAD AND COPPER

Contaminant	Year Sampled	The 90th Percentile	Number of Samples	Action Level	Number of sites Exceeding Action Level	Unit of Measure	Potential Source of Contamination
Lead	2017	3.07	30	15	0	ppb	Corrosion of household plumbing systems; erosion of natural deposits.
Copper	2017	0.212	30	1.3	0	ppm	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.

Additional Health Information for Lead If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <http://www.epa.gov/safewater/lead>.

ASBESTOS

Some people who drink water containing asbestos well in excess of the maximum contaminant level (MCL) for many years may have an increased risk of developing benign intestinal polyps.

Year Sampled	Average Level	Minimum Level	Maximum Level	MCL Limit	Unit of Measure	Potential Source of Contamination
2013	<0.185	<0.185	<0.185	7	MFL	Decay of asbestos cement water mains; and erosion of natural deposits.

TURBIDITY

Turbidity has no health effects. However, Turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea and associated headaches. Turbidity is removed by sedimentation and filtration.

Contaminant	Year Sampled	Highest Single Measurement	Lowest monthly % of Samples Meeting Limits	Turbidity Limit	Unit of Measure	Potential Source of Contamination
Turbidity	2017	0.28	100%	0.3	NTU	Soil Runoff

TOTAL ORGANIC CARBON

Total organic carbon (TOC) no health effects. The disinfectant can combine with TOC to form disinfection byproducts. Disinfection is necessary to ensure that water does not have unacceptable levels of pathogens. Byproducts of disinfection include trihalomethanes (THMs) and haloacetic acids (HAA) which are reported elsewhere in this report.

Contaminant	Year Sampled	Average Level	Minimum Level	Maximum Level	Unit of Measure	Potential Source of Contamination
Source Water	2017	6.64	5.36	8.58	ppm	Naturally present in environment
Drinking Water	2017	3.40	2.97	3.93	ppm	Naturally present in environment
Removal Ratio	2017	1.04	0.63	1.24	% removal	N/A

*Removal ratio is the percent of TOC removed by the treatment process divided by the percent of TOC required by TCEQ to be removed.

TOTAL COLIFORM

Total coliform bacteria are used as indicators of microbial contamination of drinking water because testing for them is easy. While not disease-causing organisms, they are often found in association with other microbes that are capable of causing disease. Coliform bacteria are more hardy than many disease-causing organisms; therefore, their absence from water is a good indication that the water is microbiologically safe for human consumption.

Contaminant	Year Sampled	Highest Monthly Number of Positive Samples	MCL	Unit of Measure	Potential Source of Contamination
Total Coliform Bacteria	2017	0	*	Presence	Naturally present in the environment.
Fecal Coliform	2017	0	*	Presence	Naturally present in the environment.

* Two or more consecutive Coliform present in samples in any single month

SECONDARY AND OTHER CONSTITUENTS NOT REGULATED (NO ASSOCIATED ADVERSE HEALTH EFFECTS)

Constituent	Year Sampled	Number of Samples	Average Level	Minimum Level	Maximum Level	Secondary Limit	Unit of Measure	Potential Source of Contamination
Aluminum	2017	7	0.059	0.019	0.14	0.2	ppm	Abundant naturally occurring element
Bicarbonate	2017	18	92.9	25	238	N/A	ppm	Corrosion of carbonate rocks such as limestone
Calcium	2017	7	3.76	1.34	10.8	N/A	ppm	Abundant naturally occurring element
Chloride	2017	7	13.9	5.71	40.3	N/A	ppm	Abundant naturally occurring element; used in water purification; byproduct of oil field activity
Copper, Free	2017	38	0.089	0.00022	0.575	1.3	ppm	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.
Iron	2017	3	0.3	0.3	0.3	0.3	ppm	Erosion of natural deposits; iron or steel water delivery equipment or facilities
Lead	2017	38	1.816	0.546	5.47	N/A	ppm	Corrosion of household plumbing systems; erosion of natural deposits
Magnesium	2017	7	0.86	0.219	3.41	N/A	ppm	Abundant naturally occurring element
Manganese	2017	7	0.018	0.012	0.037	0.05	ppm	Abundant naturally occurring element
pH	2011	5	8.1	7.7	8.1	N/A	ppm	Measure of corrosivity of water
Sodium	2017	7	90.08	112	88	N/A	ppm	Erosion of natural deposits; byproduct of oil field activity
Sulfate	2017	7	17	38	5	300	ppm	Naturally occurring; common industrial byproduct; byproduct of oil field activity
Total Alkalinity as CaCO ₃	2017	20	89.6	238	25	N/A	ppm	Naturally occurring soluble mineral salts
Total Dissolved Solids	2017	7	235					